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On Milman’s Ellipsoids and M-Position of Convex Bodies

Sergey G. Bobkov

Abstract. Milman’s ellipsoids and an M -position of convex bodies are de-
scribed in terms of isotropic restricted Gaussian measures.

1. Introduction

For symmetric convex bodies A and B in Rn, put

M(A,B) =

(
|A+B|
|A ∩B| ·

|Ao +Bo|
|Ao ∩Bo|

)1/n

.

Here and below we denote by |A| the n-dimensional volume of a set A in Rn, and
by Ao = {x ∈ Rn : 〈x, y〉 ≤ 1, ∀y ∈ A} its polar.

A main result about the quantity M(A,B) is the following theorem due to
V. D. Milman. Let us make the convention that all ellipsoids (in particular, all
Euclidean balls) have the center at the origin.

Theorem 1.1 (V. D. Milman [M1]). For any symmetric convex body K in
Rn, there exists an ellipsoid E such that

(1.1) M(K, E) ≤ C,

where C is a universal constant.

An ellipsoid E which appears in this statement is called Milman’s ellipsoid or,
for short, an M -ellipsoid (although the definition involves an implicit constant C).
This deep result contains as corollaries a number of important facts in Convex Ge-
ometry, such as the reverse Santalo inequality due to J. Bourgain and V. D. Milman
[B-M], Milman’s reverse Brunn-Minkowski inequality [M1], the duality of entropy
numbers [K-M]. There are some other equivalent definitions of M -ellipsoids, for
example, in terms of the entropy numbers. For different proofs, see subsequent
works of V. D. Milman [M2]–[M4], and the book by G. Pisier [P], which contains
an excellent exposition and historical remarks.

Note that if E is an M -ellipsoid for K, then the polar ellipsoid Eo is an M -
ellipsoid for the polar body Ko. In general

(1.2) M(T (A), T (B)) = M(A,B) = M(Ao, Bo)
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2 SERGEY G. BOBKOV

for any linear invertible map T : Rn → Rn, so the M -functional represents an
affine invariant of the couple (A,B), as well as of the couple (Ao, Bo). Hence, in
Theorem 1.1 one may always choose T such that T (E) is a Euclidean ball. In this
case, one says that T (K) is in M -position (i.e., in “main” position according to
[M4], which also corresponds to the notion of a “regular” position in [P]). In other
words, a symmetric convex body K is in M -position, when the inequality (1.1)
holds true for some Euclidean ball E .

Since Theorem 1.1 only states the existence of an M -ellipsoid, it is natural to
ask how to find or constructively describe it. Equivalently, one may wonder how to
find an M -position for K (that is, a map T ). One way towards a solution to this
question seems the notion of the isotropic position.

Let us recall that a symmetric log-concave probability measure μ on Rn with
a (symmetric log-concave) density f is isotropic, if for any vector θ from the unit
sphere Sn−1,

(1.3) f(0)2/n
∫

〈x, θ〉2 dμ(x) = L2
μ,

for some positive Lμ, called an isotropic constant of μ. By simple algebra, any
symmetric log-concave measure μ can be put in the isotropic position, and often
the condition (1.3) has a matter of normalization, only. As a particular case, a
symmetric convex body K with unit volume is called isotropic with an isotropic
constant LK > 0, if the restricted Lebesgue measure on K with the indicator
density function f = 1K is isotropic, i.e., for any θ ∈ Sn−1,∫

K

〈x, θ〉2 dx = L2
K .

There is a good reason to expect that any symmetric convex body, which is
in the isotropic position, is in M -position. As was noticed in [B-K-M], if this
was true, the isotropic constants would be bounded from above by an absolute
constant (this assertion represents an equivalent formulation of the so-called hyper-
plane conjecture). In this note we show that, regardless of whether this is true or
not, an M -position of convex bodies may indeed be related to the isotropy – but
in a different class of log-concave probability distributions.

Denote by γ the standard Gaussian measure on Rn with density ϕ(x) =

(2π)−n/2 e−|x|2/2, x ∈ Rn. For symmetric convex bodies K in Rn, we consider
the normalized restrictions of this measure to K, defined by

γK(A) = γ(A ∩K)/γ(K)

on Borel subsets A of the space. Theorem 1.1 may be complemented with the
following:

Theorem 1.2. Given a symmetric convex body K in Rn with volume |K| = 1,
assume the normalized restricted Gaussian measure γK is isotropic. Then K is in
M -position. Moreover,

(1.4) LγK
≤ C,

for some positive numerical constant C.

Thus, the isotropic constants are universally bounded for the class of isotropic
restricted Gaussian measures.
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ON MILMAN’S ELLIPSOIDS AND M-POSITION OF CONVEX BODIES 3

The argument leading to (1.4) essentially uses Theorem 1.1. To make its ap-
plication convenient, first we discuss different equivalent representations for the
functional M(A,B), which are easily obtained by virtue of the reverse Santalo
inequality and an extension of Roger-Shephard’s inequality to the case of two bod-
ies (Section 2). In Section 3, the isotropic positions for the normalized restricted
Gaussian measures are described as solutions to the variational problem, where
γ(T (K)) is to be maximized among all volume-preserving linear maps T . On this
step, we involve a generalized form of the so-called B-conjecture, considered and
solved in [CE-F-M]. A final step of the proof, based on the concentration property
of restricted Gaussian measures, is made in Section 4.

2. Representations for M(A,B)

We need one generalization of the well-known Roger-Shephard’s difference body
inequality.

Proposition 2.1 (C. A. Roger and G. C. Shephard [R-S2]). For all convex
bodies A and B in Rn,

|A−B| |A ∩B| ≤ (2n)!

n!2
|A| |B|.

In case of one convex body, that is, when A = B, the above inequality is
reduced to

|A−A| ≤ (2n)!

n!2
|A|.

It was first proved in [R-S1], and later Roger and Shephard obtained a more general
form, involving two convex bodies; cf. [R-S2], Theorem 1 on p. 273. It can also be
derived from Berwald’s Khinchin-type inequality for the class of concave functions,
cf. [Ber], [Bor].

If convex bodies A and B in Rn are symmetric (which is always assumed in
the sequel), Proposition 2.1 implies

(2.1) |A|1/n|B|1/n ≤ |A+B|1/n|A ∩B|1/n ≤ 4|A|1/n|B|1/n,
where the (trivial) left inequality is added to compare with the right inequality.

Definition. For two expressions Q and Q′, depending on the dimension n, we
write Q ∼ Q′, if for any n ≥ 1,

cQ ≤ Q′ ≤ c′Q,

with some numerical positive constants c, c′.

For example, (2.1) gives the equivalence

|A+B|1/n|A ∩B|1/n ∼ |A|1/n|B|1/n

within the factors 1 and 4. Applying this twice in the definition of theM -functional,
we obtain

M(A,B) ∼ |A|1/n|B|1/n
|A ∩B|2/n · |A

o|1/n|Bo|1/n
|Ao ∩Bo|2/n .

By the Santalo and reverse Santalo inequalities, written as the equivalence
|K|1/n|Ko|1/n ∼ 1

n (cf. [B-M]), we then get that

(2.2) M(A,B)1/2 ∼ 1

n
· 1

|A ∩B|1/n · |Ao ∩Bo|1/n .

25
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4 SERGEY G. BOBKOV

On the other hand, since 1
2 (A

o ∩Bo) ⊂ (A+B)o ⊂ Ao ∩Bo, we always have

|(A+B)o|1/n ∼ |Ao ∩Bo|1/n.
Hence, by the Santalo and the reverse Santalo inequalities, applied to K = A+B,

|A+B|1/n ∼ 1

n |Ao ∩Bo|1/n ,

so (2.1) implies

|A ∩B|1/n
|Ao ∩Bo|1/n ∼ n|A|1/n|B|1/n.

Plugging this in (2.2), we get an equivalent expression for the M -functional, which
does not involve polar bodies.

Corollary 2.2. For all symmetric convex bodies A and B in Rn,

(2.3) M(A,B)1/2 ∼ |A|1/n |B|1/n
|A ∩B|2/n ,

as well as

M(A,B)1/2 ∼ |A+B|2/n
|A|1/n|B|1/n .

Multiplying the two relations, we also have

M(A,B)1/2 ∼ |A+B|1/n
|A ∩B|1/n .

All these representations remain to hold for the polar bodies by the polar
invariance of M (property (1.2)) and seem to be more-less known, although we
could not find a direct reference.

Now, for a symmetric convex body K in Rn with volume |K| = 1, introduce
the functional

(2.4) M(K) = inf
E

M(K, E),

where the infimum runs over all ellipsoids E in Rn. Then, Milman’s Theorem 1.1
is telling us that M(K) is bounded from above by a universal constant. Using
Corollary 2.2, this quantity may be related to a simpler functional

m(K) = sup
|E|=1

|K ∩ E|1/n.

Corollary 2.3. For any symmetric convex body K in Rn with volume |K| =
1, up to some positive absolute constants, we have

(2.5)
C0

m(K)
≤ M(K) ≤ C1

m(K)4
.

Indeed, by (2.3) with A = K,

(2.6) M(K,B)−1/2 ∼ |K ∩B|2/n
|B|1/n ,

which implies
1

C
M(K,B)−1/2 ≤ |B|1/n ≤ CM(K,B)1/2

26
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ON MILMAN’S ELLIPSOIDS AND M-POSITION OF CONVEX BODIES 5

with some absolute C ≥ 1. Hence, for the optimal ellipsoid E in (2.4), we have
1
λ ≤ |E|1/n ≤ λ, where λ = CM(K)1/2. By (2.6), this gives

(2.7) M(K)−1/2 ∼ sup

{
|K ∩ E|2/n

|E|1/n :
1

λ
≤ |E|1/n ≤ λ

}
.

Restricting the sup on the right-hand side to the ellipsoids with unit volume, we
get immediately that M(K)−1/2 ≥ cm(K)2, which is the bound on the right-hand
side of (2.5).

On the other hand, put E ′ = 1
|E|1/n E , so that |E ′| = 1. Assuming |E|1/n ≥ 1

λ

and using also that |K| = 1, we have

|K ∩ E|2/n
|E|1/n ≤ |K ∩ E|1/n

|E|1/n =

∣∣∣∣
(

1

|E|1/n K

)
∩ E ′

∣∣∣∣
1/n

≤ |(λK) ∩ E ′|1/n ≤ λ|K ∩ E ′|1/n ≤ λm(K).

Taking the sup over all E and applying (2.7), we arrive at

M(K)−1/2 ≤ Cλm(K) = C ′M(K)1/2m(K),

which is equivalent to the bound on the left-hand side of (2.5). Corollary 2.3 follows.

Remark. According to (2.6), if K is a symmetric convex body in Rn with

volume |K| = 1, we have M̃(K) ∼ m(K)−4 for a slightly modified functional

M̃(K) = inf
|E|=1

M(K, E).

3. Restricted Gaussian measures in isotropic position

Recall that the standard (n-dimensional) Gaussian measure γ is defined on
Borel subsets of Rn by

γ(A) = (2π)−n/2

∫
A

e−|x|2/2 dx.

Proposition 3.1. Given a symmetric convex body K in Rn, the normalized
restricted Gaussian measure γK is isotropic, if and only if in the class of all volume
preserving linear maps T : Rn → Rn the maximum to

γ(T (K)) = (2π)−n/2

∫
T (K)

e−|x|2/2 dx

is attained for the identity map T (x) = x.

Proof. For Q = T ′T put

u(Q) = (2π)n/2 γ(T (K)) =

∫
K

e−〈Qx,x〉2/2 dx.

So, maximum to γ(T (K)) over all linear maps T with | detT | = 1 is attained at
the identity map, if and only if in the class M of all symmetric positive definite
matrices Q with detQ = 1 the functional u(Q) attains a maximum for the unit
matrix In.

Note that u does attain a maximum at some Q in M, since u(Q) → 0 when the
maximal eigenvalue of Q grows to infinity. To find a necessary condition, assume

27
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6 SERGEY G. BOBKOV

that Q provides a local maximum to u. Given an arbitrary symmetric n×n matrix
E and numbers ε small enough, define

Qε =
In + εE

det(In + εE)
= In + ε F + o(ε),

where F = E − (TrE) In. The latter may be any symmetric n × n matrix with
trace TrF = 0. Hence 〈Qεx, x〉 = 〈x, x〉+ ε 〈Fx, x〉+ o(ε), as ε → 0 uniformly over
all x ∈ K, and by Taylor’s expansion,

u(Qε) = u(In)−
ε

2

∫
K

〈Fx, x〉 e−|x|2/2 dx+ o(ε).

Since u(Qε) ≤ u(In) with arbitrary ε in some neighbourhood of zero, we conclude
that ∫

K

〈Fx, x〉 e−|x|2/2 dx = 0

for any symmetric F such that TrF = 0. But this is equivalent to saying that there
is a constant C such that, for all i, j = 1, . . . , n,

(3.1)

∫
K

xixj dγ(x) = Cδij ,

where δij denotes Kronecker’s symbol. Thus,
∫
K
〈x, θ〉2 dγ(x) = C, for any unit

vector θ, that is, γK is isotropic.
The converse statement is more delicate. Assume γK is isotropic. We need to

show that

(3.2) u(Q) ≤ u(In),

for any symmetric positive definite matrix Q with detQ = 1.
Let us represent Q = UDU−1, where U is an orthogonal matrix, and D =

D(λ1, . . . , λn) is diagonal with eigenvalues λ1, . . . , λn > 0 on the main diagonal,
such that λ1 . . . λn = 1. Then

u(Q) =

∫
U(K)

e−〈Dx,x〉2/2 dx.

But, as follows from the very definition, the restricted Gaussian measures γU(K)

will be isotropic for any orthogonal U , as long as γK is isotropic. Replacing U(K)
with K, the inequality (3.2) is therefore reduced to

(3.3) u(D(λ)) ≤ u(In),

for any collection λ = (λ1, . . . , λn) such that λi > 0 and λ1 . . . λn = 1.
At this step we involve the following observation made by D. Cordero-Erausquin,

M. Fradelizi and B. Maurey in their study and proof of the so-called B-conjecture,
cf. [CE-F-M], Theorem 1. It is stated below as a lemma, where D(λ) is treated as
a linear map.

Lemma 3.2 (D. Cordero-Erausquin, M. Fradelizi and B. Maurey [CE-F-M]).
For any symmetric convex body K in Rn, the function

(t1, . . . , tn) −→ γ(D(et1 , . . . , etn)(K))

is log-concave on Rn.

28
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ON MILMAN’S ELLIPSOIDS AND M-POSITION OF CONVEX BODIES 7

To continue the proof of Proposition 3.1, introduce the function on Rn−1

v(t1, . . . , tn−1) = log u(D(et1 , . . . , etn)),

where tn = −(t1 + · · · + tn−1). The required property (3.3), where one can take
λi = eti , is equivalent to the statement that v attains a maximum at the origin.
But by Lemma 3.2, v is concave, so it is enough to check that ∇v(0) = 0. To this
aim, write

v(t1, . . . , tn−1) = log

∫
K

exp

[
− 1

2

n∑
i=1

e2tix2
i

]
dx.

The direct differentiation gives, for any i = 1, . . . , n− 1,

∂v(0)

∂ti
=

1

u(In)

[ ∫
K

x2
n e

−|x|2/2 dx−
∫
K

x2
i e

−|x|2/2 dx

]

=

∫
x2
n dγK(x)−

∫
x2
i dγK(x) = 0,

according to the isotropy assumption (3.1). Hence, ∇v(0) = 0.
Proposition 3.1 is proved. �

Recall that

(3.4) m(K) = sup
|E|=1

|K ∩ E|1/n,

where the supremum is taken over all ellipsoids with unit volume. Note that this
quantity does not depend on the “position” of K.

Corollary 3.3. Let K be a symmetric convex body in Rn with volume |K| = 1.
If the normalized restricted Gaussian measure γK is isotropic, then

γ(K)1/n ∼ γ(K ∩D)1/n ∼ m(K),

where D is the Euclidean ball in Rn of unit volume with center at the origin.

Proof. Since the density of γ does not exceed (2π)−n/2, we have

(3.5) γ(K ∩D) ≤ (2π)−n/2 |K ∩D| ≤ (2π)−n/2m(K)n.

Now, consider a volume preserving linear map T : Rn → Rn, such that for
K ′ = T (K) the supremum in (3.4) is attained at E = D. Since D has radius of
order

√
n,

γ(K ′) ≥ γ(K ′ ∩D) = (2π)−n/2

∫
K′∩D

e−|x|2/2 dx ≥ cn |K ′ ∩D|

= cn m(K ′)n = cn m(K)n,

for some absolute constant c > 0. Using the isotropy assumption for γK (Proposi-
tion 3.1), we arrive at γ(K) ≥ γ(K ′) ≥ cnm(K)n. Thus,

γ(K)1/n ≥ cm(K).

Moreover, since γ(D)1/n ≥ c′ with some absolute constant c′ > 0,

(3.6) γ(K ∩D)1/n ≥ γ(K)1/nγ(D)1/n ≥ c′′ m(K),

29
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8 SERGEY G. BOBKOV

where the first inequality is a simple part of the Gaussian correlation inequality.
More generally, one has μ(K ∩D) ≥ μ(K)μ(D), for any spherically invariant prob-
ability measure on Rn, cf. [S-S-Z]. Thus, combining (3.5) with (3.6), we get

γ(K ∩D)1/n ∼ m(K).

Using once more γ(D)1/n ≥ c′ and the first inequality in (3.6), we also have that
γ(K)1/n ∼ γ(K ∩D)1/n. This finishes the proof. �

Remark 3.4. Without the assumption that γK is isotropic, we only have a
lower bound

m(K) ≥ c γ(K)1/n,

where K is an arbitrary symmetric convex body in Rn with |K| = 1, and c > 0 is
an absolute constant. This is seen by combining (3.5) with the first inequality in
(3.6).

Remark 3.5. One may also relate m(K) to the isotropic constant LK and
other related quantities. Let K be a symmetric convex body in Rn with |K| = 1.
The isotropic constant does not depend on the “position” and is defined by

L2
K = inf

T

∫
K

|Tx|2
n

dx,

where the infimum is taken over all volume preserving linear maps T : Rn → Rn.
If K is isotropic (so that the above infimim is attained for the identity map), by
Jensen’s inequality,

γ(K) ≥ (2π)−n/2e−
1
2

∫

K
|x|2 dx = (2π)−n/2e−nL2

K/2.

Hence, γ(K)1/n ≥ 1√
2π

e−L2
K and, by Remark 3.4, m(K) ≥ c e−L2

K/2 with some

absolute constant c > 0.
However, the exponential dependence on L2

K is not optimal and can be im-
proved by involving other than Gaussian probability measures (e.g. with heavy-
tailed Cauchy densities) to get

(3.7) m(K) ≥ c

LK
.

The latter can also be derived from the reverse Brunn-Minkowski-type inequality
in the form of K. Ball [Bal], who showed that with some numerical constant C, for
all convex symmetric bodies K and K ′ in Rn,

|K +K ′|2/n ≤ C

[
1

n |K|

∫
K

|x|2 dx+
1

n |K ′|

∫
K′

|x|2 dx
]
.

In particular, taking K ′ = D the Euclidean ball in Rn of unit volume, and if K is
isotropic and has volume one, then

|K +D|1/n ≤ C LK ,

where C is a different numerical constant and where we have used the fact LK is
separated from zero. Hence, using the left inequality in (2.1), we have |K∩D|1/n ≥
1/(CLK), which implies (3.7).

Although being a tautology, the relation (3.7) shows that Milman’s Theorem 1.1
in the form m(K) ≥ c > 0 would follow from the assertion of the slicing conjecture,

30
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ON MILMAN’S ELLIPSOIDS AND M-POSITION OF CONVEX BODIES 9

telling that LK is bounded from above by a universal constant. In fact, with similar
arguments (3.7) may be sharpened as

m(K) ≥ c

L̃K

in terms of L̃K = infK′ LK′ , where the infimum is taken over all convex bodies
K ′ in Rn with baricenter at the origin, such that |K ′| = 1 and 1

2 K
′ ⊂ K ⊂ 2K ′.

On the other hand, a remarkable theorem due to B. Klartag [K] concerning the

isomorphic variant of the slicing problem asserts that L̃K is indeed bounded from
above by a universal constant. Hence, Klartag’s theorem implies that m(K) is
separated from zero (and therefore implies Theorem 1.1, provided that one can use
the reverse Santalo and the extended Roger-Shephard’s inequalities).

4. Isotropic constants of restricted Gaussian measures

Let K be a symmetric convex body in Rn with volume |K| = 1. As it was
already discussed, the quantity

(4.1) M(K) = inf
E

M(K, E)

may be bounded both from above and below by negative powers of

m(K) = sup
|E|=1

|K ∩ E|1/n.

Thanks to Theorem 1.1, the latter quantity is separated from zero.
Now, assume the normalized restricted Gaussian measure γK is isotropic. As

we know from Corollary 3.3, γ(K ∩D)1/n ∼ m(K), where D is the Euclidean ball
in Rn of unit volume. Together with (3.5) this gives, up to an absolute constant
C,

m(K) ≤ C |K ∩D|1/n.
Hence, by Corollary 2.2, cf. (2.6), and Corollary 2.3,

M(K,D) ∼ |K ∩D|−4/n ≤ C4m(K)−4 ≤ C ′M(K)4.

Irrespectively of whether or not E = D realizes minimum to (4.1), if M(K) is
bounded by a universal constant, then so is M(K,D). It is in this sense K is in an
M -position (which is the first assertion in Theorem 1.2).

Now, let us look at the isotropic constant of γK . It is defined like in the general
symmetric isotropic log-concave case (1.3) by

(4.2) L2
γK

=
1

γ(K)2/n

∫ |x|2
n

dγK(x).

Lemma 4.1. Given a symmetric convex body K in Rn with volume |K| = 1, if
γK is isotropic, then

(4.3) c ≤
∫ |x|2

n
dγK(x) ≤ 1

with some absolute constant c > 0. In particular,

LγK
∼ γ(K)−1/n.
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10 SERGEY G. BOBKOV

The right inequality in (4.3) remains to hold regardless of the volume of K and
of whether γK is isotropic or not. However, the assumptions are important for the
left inequality. This can be seen on the example of the parallepipeds

K =
[
−ε

2
,
ε

2

]n−1

×
[
− 1

2εn−1
,

1

2εn−1

]
, ε > 0.

Indeed, in this particular case rewrite the left inequality in (4.3) equivalently as∫ ε
2

− ε
2

. . .

∫ ε
2

− ε
2

∫ − 1

2εn−1

− 1

2εn−1

(
x2
1 + · · ·+ x2

n

n
− c

)
e−

1
2 (x2

1+···+x2
n) dx1 . . . dxn ≥ 0.

Dividing by εn−1 and letting ε → 0, in the limit we obtain that
∫ +∞
−∞ (

x2
n

n −
c) e−x2

n/2 dxn ≥ 0, so, c ≤ 1
n .

Proof of Lemma 4.1. Since γK has a log-concave density with respect to γ,
it inherits many properties of the standard Gaussian measure. As an example, it
satisfies an isoperimetric inequality similarly to the Gaussian case (cf. [B-L], [Bob],
[C]). In addition, for any function u on Rn with Lipschitz semi-norm ‖u‖Lip ≤ 1,

VarγK
(u) ≤ Varγ(u) ≤ 1.

One may take u(x) = xi, so if K is symmetric, we get
∫
x2
i dγK ≤ 1. Hence,∫

|x|2 dγK(x) ≤ n, which is the right inequality in (4.3).
For the left inequality of the lemma (which is not needed for Theorem 1.2), one

may use the well-known fact that the isotropic constants are separated from zero.
Hence, from (4.2) and using Corollary 3.3 and Theorem 1.1, we have with some
absolute constants∫ |x|2

n
dγK(x) ≥ c1γ(K)2/n ≥ c2m(K)2 ≥ c3 > 0.

�

Proof of (1.4). Now, it is easy to complete the proof of Theorem 1.2. Ac-
cording to Lemma 4.1, if |K| = 1 and γK is isotropic,

LγK
∼ 1

γ(K)1/n
∼ 1

γ(K ∩D)1/n
∼ 1

m(K)
≤ CM(K).

It remains to apply Theorem 1.1. �

Remark. If K is a symmetric convex body in Rn with |K| = 1, and if γK is
not necessarily isotropic, then we only have an inequality

LγK
≤ γ(K)−1/n.

Arguing as before, we have

γ(K)−1/n ∼ γ(K ∩D)−1/n ≤ C |K ∩D|−1/n.

Hence, by Theorem 1.1, LγK
is still universally bounded, as long as K is in M -

position.
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